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Existence of localised solutions of (1 + 1)-dimensional 
non-linear Dirac equations with scalar self-interaction 
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Bielefeld 1, West Germany 

Received 6 January 1986, in final form 14 March 1986 

Abstract. Necessary and sufficient conditions for the existence of localised solutions of 
the form $(x, t )  = exp(-iot)4(x), with 4 real, of the classical equations of motion for 
(1 + 1)-dimensional non-linear spinor fields are presented. Furthermore, we give existence 
conditions for non-linear second-order equations obtained as a Klein-Gordon limit of the 
considered spinor field equations. 

1. Introduction 

Much progress has been made in the mathematical treatment of classical non-linear 
Dirac fields. Necessary conditions for the existence of stationary solutions have been 
obtained in arbitrary space dimensions [ 1,2]. Furthermore, two recent papers present 
explicit solutions of non-linear Dirac equations in one space dimension which give 
important hints for general existence conditions [3,4]. There are no analytic solutions 
in three space dimensions and most understanding is based on numerical investigations. 
Only for the scalar self-interactions is there a rigorous proof, by Cazenave and VBzquez, 
for the existence of stationary solutions, under simple assumptions on the self-interac- 
tion term which are explained below [5]. Using the ‘shooting method’ they show the 
existence of solutions which are separable in spherical coordinates, a special feature 
of the scalar self-interaction. 

In this paper we restrict ourselves to the scalar self-interaction for Dirac equations 
in ( 1  + 1 )  dimensions. Thus we consider the Lagrangian 

Looking for stationary states, i.e. 

of the associated field equation and requiring 4 to be real, we are led to the following 
system of ordinary differential equations: 

(1 .3)  

with positive constants m and o and where g denotes the derivative of G. Since U 
and U have to vanish at infinity we have to consider a boundary value problem. 
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The existence condition of [2] is 

( Y’ - u 2 ) g (  u2 - U’) - G( U’ - U’) dx > 0 (1.4) 

if (U, U )  is a localised solution of (1.3). Furthermore, we obtain that 

w uu dx = 0 (1.5) 

and 

H(u(x ) ,  ~ ( X ) ) = ~ [ G ( U ’ ( X ) - U ~ ( X ) ) - ~ ( ~ ’ ( X ) - U * ( X ) ) + W ( U ~ ( X ) + U ’ ( X ) ) ] = ~ .  (1.6) 

In § 2 of this paper, under certain assumptions on g, we give a necessary and 
sufficient condition for the existence of a localised solution. Furthermore, the obtained 
solution exhibits certain nice properties, e.g. exponential decay. In § 3 we consider 
a non-linear scalar field equation in one space dimension obtained as a Klein-Gordon 
limit of the spinor field equation in § 2. Applying the existence theorem of Berestycki 
and Lions [6] we obtain a condition which is both necessary and sufficient for the 
existence of a localised solution. 

2. An existence theorem for localised solutions of non-linear Dirac equations 

Let g E C(R, R) be a locally Lipschitz continuous increasing function such that g(0) = 0. 
Using G(5) = g(s) ds we define 

Ho(5)=  H(0, 5)=$[G(52)-m52+w52]. (2.1) 
We consider the boundary value problem 

U ’ =  u [ g ( u 2 -  u 2 ) - ( m  - w ) ]  

U‘= u [ g ( u 2  - U’) - ( m  + U ) ]  

U, U E C’(R, R) 

lim u ( x ) =  lim u(x)=O 

4 x 0 )  > 0 U(X0) = 0 for some X ~ E  R. 

X + * S  X-+*CC 

Theorem 2.1. A necessary and sufficient condition for the existence of a solution (U, U )  
of problem (2.2) is that 

lo = inf{ 5 > 0 1 Ho( 5 )  = 0) exists 
(2.3) 

l o >  0 dHoldSI,=,,> 0. 

Furthermore, if (2.3) is satisfied, the solution is unique up to translations of the origin 
and satisfies, after suitable translations of the origin, 

(i) -U(-x) = U(X) 

(ii) v ( 0 )  = lo 
(iii) O <  u ( x )  < u(x) 

(iv) ~ ( x ) ,  u ( x )  have exponential decay at infinity. 

U(-x) = u(x) 
u(0) = 0 

for x > o  
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Remark 2.2. Under the assumptions of theorem 2.1 we can obtain the solution as the 
solution of the initial value problem 

U‘= u [ g ( u 2 -  U’) - ( m  - U ) ]  

U’ = u [ g ( u 2 -  U’) - ( m  + U ) ]  

u ( 0 )  = 0 

(2.4) 

4 0 )  = l o .  

Remark 2.3. Condition (2.3) implies Ho(l)<O in (0, lo) and m > o  since 
dHo(l) ldlI ,=os 0. 

Remark 2.4. Our assumptions on g are very similar to the assumptions on g for the 
existence theorem in three space dimensions but they are more general (see [ 5 ] ) .  

Proof of theorem 2.1. Let (U, U )  denote the solution of the initial value problem (2.4). 
It exists and is unique on a maximal interval (-f,f). Furthermore, H ( u ( x ) ,  u ( x ) )  = 0 
for 1x1 < 2. Since 

d Ha( l ) /  dll  b = i o  > 0 

we have u ’ ( 0 )  > 0 while u ’ ( 0 )  = 0. We observe 

- U ( - x )  = u ( x )  

U( -x) = u ( x )  

Thus we consider only the interval (0, a ) .  

1x1 < f 
1x1 < f. 

We claim that u ( x )  > 0, u ( x )  > 0 in (0, a) ,  from the following. 
(i)  Suppose there exists xo> 0 with u ( x o )  = 0, u ( x o )  > 0 ( u ( x o )  d 0 is impossible). 

Then u ( x o )  2 lo because of the definition of lo. But S(x) = u 2 ( x )  - u ’ ( x )  is decreasing 
in (0, xo) which yields a contradiction. Therefore u ( x o )  > 0 in (0,f). 

(ii) Suppose there exists x, with u ( x , ) = O .  If u ( x , ) > O  the solutions intersect in 
(0, x,) which is impossible because of H ( u ( x ) ,  u ( x ) )  = 0. If u ( x , )  < 0 there exists xo> 0 
with u ( x o )  = 0 which is ruled out in (i). If u ( x , )  = 0 then u ’ ( x , )  = u ‘ ( x , )  = 0. Thus 
U = U = 0, which is impossible. Therefore u ( x )  > 0 in (0 , f ) .  

Furthermore, clearly O <  u ( x )  < u ( x )  in (0 , f ) .  
Next we show that (U, U )  is bounded in (0, a). We have S(x) > 0 in ( 0 , f )  and 

H o ( S ( x ) )  = - w u ’ ( x )  <O. Since H o ( c )  is bounded below, u ( x )  is bounded. Using 
S(x) < lo in (0,a) we see that u ( x )  is also bounded. By continuation arguments one 
can see that (U, U )  is defined on the whole line, i.e. 

At last 1imx-,= u ( x )  = 1imx-,= u ( x )  = 0. Indeed, we have limX+= u ’ ( x )  = 
limx+= u ’ ( x )  = 0 because (U, U )  is bounded and (U, U )  cannot oscillate. Clearly we have 
hX+, u ( x )  = 0. Now let limx+= u ( x )  = U,. Then Ho(u,) = 0 and dH0(l)/dl1,=,_ = 0. 
Thus U, # lo. But U,> lo is impossible and therefore U, = 0. The proof of the 
exponential decay is now immediate. 

= W. 

Now suppose that (w, z) is another solution of (2.2). After a suitable translation of 
the origin we have w(0)  = 0, z(0) > 0 and Ho(z (0 ) )  = 0. Thus z(0) = lo and U = w, U = z 
by the uniqueness of the initial value problem (2.4). 

We claim that condition (2.3) is necessary. Suppose it is violated and there exists 
a solution (U, U )  of (2.2). Clearly, after translation Ha( u(0) = 0. Hence lo exists and 
(2.3) can only fail to be satisfied in two ways, as follows. 



3226 J Stubbe 

Case 1 .  l o > O  but d H 0 ( ~ ) / d ~ 1 , , , , ~ 0 .  
Suppose u ( 0 )  = lo. Then dHo(g)/dlll=bo<O because otherwise (u(O), 0) is a rest 

point of H (  U, U). As aconsequence Ho( 5) 2 Oin (0, lo) and w 3 m because dHo( l ) / d l  2 0 
for small 5. But then we have g ( l i )  < m - w S 0 which contradicts the assumptions 
on g. If u ( 0 ) > l o  there exists xo>O such that u(xo)=lo because (U, U )  solves the 
boundary value problem. We have 0 < 6(xo) S lo and Ho(6(xo)) = -wu’(xo) a 0 which 
implies u ( x o )  = 0 and we conclude as above. Hence this case is ruled out. 

Case 2. lo = 0. 
Here H,,(l)  > 0 for 5 > 0 and there exists no solution of (2.2). 
A nice property of the upper spinor component U is given in the following. 

Corollary 2.5. Under the assumptions of theorem 2.1 the upper spinor component U 
is decreasing in R’ if and only if 

ProoJ: ( a )  If g([E) - ( m  + w )  < 0, u(x) is decreasing for small x. Suppose there exists 
xo with u’(xo) = O .  Then g ( 8 ( x o ) ) - ( m + o ) = 0  because u(x)>O in R+. But this is 
impossible because S(xo) < lo and g is increasing. 

If g( l:) - ( m  + w )  = 0 we see that g( 6(x))  - ( m  + w )  < 0 because 6(x)  is decreasing 
for small x. Thus u(x) decreases for small x and we conclude as before. 

( b )  If g ( l ; )  - (m + w )  > 0, u(x) increases for small x. 
Thus we have proved the corollary. 

Remark 2.6. In order to compare the existence condition (2.3) with the integral 
condition (1.4) we observe that (2.3) implies 

l;s(la ’ G(l i ) .  (2.6) 

(2.6) can be understood as a local condition for the existence of a solution, or more 
precisely a ‘one-point’ condition. Since S(x) must be non-negative we have 
S(x)g(G(x))> G(6(x))  for all X E R  by the properties of g. 

Remark 2.7. It should be stressed that in the case of one space dimension existence 
of a solution also implies uniqueness. We do not know which possibilities occur in 
the multidimensional case. 

3. Existence conditions for localised solutions of Klein-Gordon-type equations 

If one considers the Klein-Gordon limit associated with the spinor field equation of 
(1.1) we are led to the following non-linear scalar field equation when looking for 
stationary solutions (see [ 1,4]): 

(3.1) 

We seek solutions which vanish at infinity and for which u(xo) > 0 for some xOe R. 
Denoting the right-hand side of (3.1) by f ( u )  and defining F ( u )  =j:f(s) ds we have 
the well known existence theorem of Berestycki and Lions (see [6]), as follows. 

- w ’) U + 2mg( U’) v -- g ( u’)g( U’) U. 
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Theorem 3.1. A necessary and sufficient condition for the existence of a solution U of 
equation (3.1) with the above boundary conditions is that 

CO = inf{ 5 > 0 I F (  5 )  = 0} exists 
(3.2) 

50>0 f (503 > 0. 
Furthermore, if (3.2) is satisfied, then (3.1) with boundary conditions has a unique 

solution up to translations of the origin and this solution satisfies (after a suitable 
translation of the origin): 

(i)  U ( - x )  = u ( x )  X € R  

(ii) v ( x )  > O  X € R  

(iii) U( 0) = lo 
(iv) v ' ( x )  < 0 X € R i  

(v) u ( x )  has exponential decay at infinity. 

Now we want to investigate when condition (3.2) is satisfied. For this purpose we 
make an additional assumption on g: 

lim g( t )  m + w. 
f-m 

Let us remark that this assumption was also made in [5] when proving the existence 
of localised solutions for the non-linear Dirac equation in three space dimensions. 

We now state the following proposition. 

Proposition 3.2 Condition (3.2) holds if and only if 

g-'( a)( a - m )  d a  > 0 1: c w  

where g-' denotes the inverse of g. 

Proof: We have 

F ( v )  = -t(m2-w2)u2+2m 

=- i (m2-w2)u2+m g ( t ) d t - $  g(t)'dt. 

It is easy to see that F has three critical points on R:, namely uo = 0, u1 = (g- ' (  m - U))"' 

and u2 = (g-'( m + U))"'. In u1 there is a local minimum of F while u2 is the place of 
the local maximum. Now condition (3.2) is satisfied if and only if F( u2) > 0. 

1: 1: 
By the substitution a = g(  t )  we obtain 

d g - ' b )  da da - 4  a2- 
d a  

F (  u2)  = - t (  m2 - w2)g-'( m + w )  + m 
= - ;( m' - w2)g-'( m + w ) + m ( m  + w )g-'( m + w ) 

- m  g- '(o) da - - f (m+w)*g- ' (m+w)  

+ ag-'( a )  d a  = g- ' ( a ) ( a -m)  d o  

which proves the proposition 
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Remark 3.3. The existence condition of proposition 3.2 also holds for the Klein- 
Gordon limit of Dirac equations with scalar self-interaction in three space dimensions. 
Even in that case this existence condition is both necessary and sufficient. 

Remark 3.4. A consequence of proposition 3.2 is the following. There exists w,  E (0, m) 
such that the associated Klein-Gordon equation has no localised solution if w S w ,  
and has a solution obtained by theorem 3.1 (resp the existence theorem in the multi- 
dimensional case, see [ 6 ] )  if w > U, .  

A first result in this direction was obtained by VBzquez [ 11 who determined w, for 
the Klein-Gordon limit of the Fermi interaction A&$. 
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