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Abstract. Necessary and sufficient conditions for the existence of localised solutions of
the form ¢(x, t) =exp(—iwt)d(x), with ¢ real, of the classical equations of motion for
(1+1)-dimensional non-linear spinor fields are presented. Furthermore, we give existence
conditions for non-linear second-order equations obtained as a Klein-Gordon limit of the
considered spinor field equations.

1. Introduction

Much progress has been made in the mathematical treatment of classical non-linear
Dirac fields. Necessary conditions for the existence of stationary solutions have been
obtained in arbitrary space dimensions {1, 2]. Furthermore, two recent papers present
explicit solutions of non-linear Dirac equations in one space dimension which give
important hints for general existence conditions [3, 4]. There are no analytic solutions
in three space dimensions and most understanding is based on numerical investigations.
Only for the scalar self-interactions is there a rigorous proof, by Cazenave and Vazquez,
for the existence of stationary solutions, under simple assumptions on the self-interac-
tion term which are explained below [5]. Using the ‘shooting method’ they show the
existence of solutions which are separable in spherical coordinates, a special feature
of the scalar self-interaction.

In this paper we restrict ourselves to the scalar self-interaction for Dirac equations
in (1+1) dimensions. Thus we consider the Lagrangian

Lo=5[0y" 8,4 = (3,4)y*¥] — mypd + G(4f). (1.1)
Looking for stationary states, i.e.
W(x, 1) = exp(—=iwt)$(x) 6 (x) =(”"‘)) (1.2)
u(x)

of the associated field equation and requiring ¢ to be real, we are led to the following
system of ordinary differential equations:

u' =v[g(v’~u’)—(m-w)]
’ 2.2 (1.3)
v=ulg(v’—u’)—(m+w)]

with positive constants m and w and where g denotes the derivative of G. Since u
and v have to vanish at infinity we have to consider a boundary value problem.
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The existence condition of [2] is
J (- ud)g(v*—u?) - G(v*—u?) dx >0 (1.4)
R
if (u, v) is a localised solution of (1.3). Furthermore, we obtain that
wJ‘R uvdx=0 (1.5)

and
H(u(x), v(x)) =3 G(v*(x) = u’(x)) — m(v?(x) = u*(x)) + 0 (v*(x) + u*(x))] = 0. (1.6)

In § 2 of this paper, under certain assumptions on g, we give a necessary and
sufficient condition for the existence of a localised solution. Furthermore, the obtained
solution exhibits certain nice properties, e.g. exponential decay. In § 3 we consider
a non-linear scalar field equation in one space dimension obtained as a Klein-Gordon
limit of the spinor field equation in § 2. Applying the existence theorem of Berestycki
and Lions [6] we obtain a condition which is both necessary and sufficient for the
existence of a localised solution.

2. An existence theorem for localised solutions of non-linear Dirac equations
Let g e C(R, R) be a locally Lipschitz continuous increasing function such that g(0) = 0.
Using G(¢) = [§ g(s) ds we define

Ho()=H(0, ) = G() - m*+ wl?]. (2.1)
We consider the boundary value problem

w'=v[g(v’~u’)—(m-w)]

v'=u[g(v’—u?)—(m+w)]
(2.2)
u,ve CR,R)

lim v(x)= lilll u(x)=0

X=+xoC

v(x) >0 u(xy)=0 for some x,eR.

Theorem 2.1. A necessary and sufficient condition for the existence of a solution (u, v)
of problem (2.2) is that

Lo=1inf{{ > 0| Hy(¢) = 0} exists

(2.3)
$>0 dHo/d§I{=§o>0-

Furthermore, if (2.3) is satisfied, the solution is unique up to translations of the origin
and satisfies, after suitable translations of the origin,

(i) —u(-x)=u(x) v(=x)=v(x)
(ii) v(0)=¢, u(0)=0
(iii) 0<u(x)<uv(x) for x>0

(iv) u(x), v(x) have exponential decay at infinity.
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Remark 2.2. Under the assumptions of theorem 2.1 we can obtain the solution as the
solution of the initial value problem

u'=v[g(v*-u’)—(m-0)]
v'=u[g(v’—u?)—(m+w)] (2.4)
u(0)=0 v(0) = {o.

Remark 2.3. Condition (2.3) implies Ho({)<0 in (0,{) and m>e since
dHo(g)/d§|§=os0'

Remark 2.4. Our assumptions on g are very similar to the assumptions on g for the
existence theorem in three space dimensions but they are more general (see [5]).

Proof of theorem 2.1. Let (u, v) denote the solution of the initial value problem (2.4).
It exists and is unique on a maximal interval (=%, ¥). Furthermore, H(u(x), v(x))=0
for |x|< %. Since

dHo(0)/d¢l;-,>0

we have u'(0)> 0 while v'(0) =0. We observe
—u(—x)=u(x) x| < %
v(=x)=v(x) x| < %.

Thus we consider only the interval (0, X).

We claim that u(x)>0, v(x)>0in (0, X), from the following.

(i) Suppose there exists x,>0 with u(x,) =0, v(x,) >0 (v(x,) <0 is impossible).
Then v(x,) = {, because of the definition of ¢,. But 8(x)= v*(x)—u’(x) is decreasing
in (0, x,) which yields a contradiction. Therefore u(x,)>0 in (0, X).

(ii) Suppose there exists x, with v(x,)=0. If u(x,)> 0 the solutions intersect in
(0, x,) which is impossible because of H(u(x), v(x)) =0. If u(x;) <0 there exists x,>0
with u(x,) =0 which is ruled out in (i). If u(x,)=0 then v'(x,)=u'(x,)=0. Thus
u=p =0, which is impossible. Therefore v(x)>0 in (0, X).

Furthermore, clearly 0 <u(x)<wv(x) in (0, X).

Next we show that (u, v) is bounded in (0, X). We have 8(x)>0 in (0, X) and
Hy(8(x)) = —wu’(x)<0. Since Hy({) is bounded below, u(x) is bounded. Using
8(x)<{, in (0, X) we see that v(x) is also bounded. By continuation arguments one
can see that (u, v) is defined on the whole line, i.e. X = 0.

At last lim,,. v(x)=lim,,. u(x)=0. Indeed, we have lim,,,u'(x)=
lim, . v'(x)=0because (u, v) is bounded and (u, v) cannot oscillate. Clearly we have
lim, .. u(x)=0. Now let lim, .. v(x)=vy. Then Hy(vy)=0 and dHO(g)/dg|;=% =0,
Thus vo# (5. But v.>{, is impossible and therefore v.=0. The proof of the
exponential decay is now immediate.

Now suppose that (w, z) is another solution of (2.2). After a suitable translation of
the origin we have w(0) =0, z(0) >0 and Hy(z(0))=0. Thus z(0)={,and u=w, v=z
by the uniqueness of the initial value problem (2.4).

We claim that condition (2.3) is necessary. Suppose it is violated and there exists
a solution (u, v) of (2.2). Clearly, after translation Hy(v(0)=0. Hence {, exists and
(2.3) can only fail to be satisfied in two ways, as follows.
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Case 1. {o>0 but dH({)/d¢| =, =<0.

Suppose v(0)=¢,. Then dHy({)/d¢|;=¢ <0 because otherwise (v(0),0) is a rest
pointof H(u, v). Asaconsequence Hy({)=01in (0, {;) and w = mbecaused Hy({)/d{ =0
for small ¢. But then we have g({3)<m —w =<0 which contradicts the assumptions
on g. If v(0)> ¢, there exists x,>0 such that v(x,)={, because (u, v) solves the
boundary value problem. We have 0< 8§(xo) < ¢, and Hy(8(x,)) = —wu’(x,) =0 which
implies u(x,) =0 and we conclude as above. Hence this case is ruled out.

Case 2. {,=0.
Here Hy({)>0 for {>>0 and there exists no solution of (2.2).
A nice property of the upper spinor component v is given in the following.

Corollary 2.5. Under the assumptions of theorem 2.1 the upper spinor component v

is decreasing in R™ if and only if
dHy({)

{ ¢={o

2wly=

(>0). (2.5)

Proof. (a) If g({3)—(m+w)<0, v(x) is decreasing for small x. Suppose there exists
X, with v'(x,) =0. Then g(8(x,))—(m+w)=0 because u(x)>0 in R*. But this is
impossible because §(x,) <{, and g is increasing.

If g(¢£5)—(m+w) =0 we see that g(8(x)) — (m+ ) <0 because 8(x) is decreasing
for small x. Thus v(x) decreases for small x and we conclude as before.

(b) If g(¢3) —(m+w)>0, v(x) increases for small x.

Thus we have proved the corollary.

Remark 2.6. In order to compare the existence condition (2.3) with the integral
condition (1.4) we observe that (2.3) implies

{3g(Ld) > G(L). (2.6)

(2.6) can be understood as a local condition for the existence of a solution, or more
precisely a ‘one-point’ condition. Since &(x) must be non-negative we have
5(x)g(8(x))> G(8(x)) for all xR by the properties of g.

Remark 2.7. It should be stressed that in the case of one space dimension existence

of a solution also implies uniqueness. We do not know which possibilities occur in
the multidimensional case.

3. Existence conditions for localised solutions of Klein—-Gordon-type equations

If one considers the Klein-Gordon limit associated with the spinor field equation of
(1.1) we are led to the following non-linear scalar field equation when looking for
stationary solutions (see [1, 4]):

—v'=—(m*—w)v+2mg(vY)v-g(v)g(v?)v. CRY

We seek solutions which vanish at infinity and for which v(x,)> 0 for some x,€R.
Denoting the right-hand side of (3.1) by f(v) and defining F(v) =§'(;f(s) ds we have
the well known existence theorem of Berestycki and Lions (see [6]), as follows.
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Theorem 3.1. A necessary and sufficient condition for the existence of a solution v of
equation (3.1) with the above boundary conditions is that

Lo =1inf{{ > 0| F({) =0} exists
£>0 f(&o)>0.

Furthermore, if (3.2) is satisfied, then (3.1) with boundary conditions has a unique
solution up to translations of the origin and this solution satisfies (after a suitable
translation of the origin):

(3.2)

(i) v(—x)=v(x) xeR
{(ii) v(x)>0 xeR
(iii) v(0)={¢,

(iv) v'(x)<0 xeR"

(v) v(x) has exponential decay at infinity.

Now we want to investigate when condition (3.2) is satisfied. For this purpose we
make an additional assumption on g:

lim g(t)>m+o.
I
Let us remark that this assumption was also made in [5] when proving the existence
of localised solutions for the non-linear Dirac equation in three space dimensions.
We now state the following proposition.

Proposition 3.2 Condition (3.2) holds if and only if

J’m‘ ’ g (oo—-m)do>0

0
where g~' denotes the inverse of g.

Proof. We have

F(v)=-3m*-w?)v*+2m IU g(s?)sds— Jv g(sH)g(s?)s ds

2

=—im’—w)v’+m .[ g(t)dt—3 J' g(1)*de
0 0
Itis easy to see that F has three critical points on Rg, namely v,=0, v, = (g~ '(m — 0))"/?
and v,= (g '(m+w))"? In v, there is a local minimum of F while v, is the place of
the local maximum. Now condition (3.2) is satisfied if and only if F(v,)> 0.
By the substitution o = g(t) we obtain

m+w -1 m+w -1
F(U2)=—% mz_wz)g—l(m+w)+mJ' U'Mdﬂ'_%l[ Uzdg (0') do
0 do o do
=—Ym*-w)g (m+o)+tmim+w)g (m+o)

-m Im i g (o)do-i(m+w) g (m+w)

0

+Jm i ag No)do= J‘m : g o) o—-m)do

0 0
which proves the proposition.
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Remark 3.3. The existence condition of proposition 3.2 also holds for the Klein-
Gordon limit of Dirac equations with scalar self-interaction in three space dimensions.
Even in that case this existence condition is both necessary and sufficient.

Remark 3.4. A consequence of proposition 3.2 is the following. There exists w € (0, m)
such that the associated Klein-Gordon equation has no localised solution if w < a,
and has a solution obtained by theorem 3.1 (resp the existence theorem in the multi-
dimensional case, see [6]) if o> ..

A first result in this direction was obtained by Vazquez [1] who determined w, for
the Klein-Gordon limit of the Fermi interaction Ay
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